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Abstract 

In this paper, we present our method of accurately predicting people’s 

movement under disaster situations in a metropolitan scale. Recently many 

studies have suggested methods on predicting the daily movement of the 

people from various datasets. However because of the lack of accumulated 

data and irregular behaviors of people in emergency, people movement pre-

diction under disaster situations has been challenging. Our method com-

bines multi agent simulation which uses heterogeneous characteristics of 

people in the behavioral model, and real-time observation data. We verified 

the effectiveness of our method by experimenting it on the Great East Japan 

Earthquake, and also showed that the hourly update of the optimum param-

eters of the model was effective in keeping a high prediction accuracy. Also, 

the number of people bound for each destination matched the survey results 

carried out by different research, supporting the accuracy of the method. 
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1. Introduction 

Many countries and areas suffer from devastating natural disasters every 

year, and disaster prevention is one of the most important tasks for policy 

makers. Damage could become significant especially in high dense urban 

areas which heavily rely on public transportation, since many people would 

not be able to return home located in the outskirts if they become paralyzed. 

Excessive concentration would cause secondary disasters, such as the late-

ness of rescue activities and inefficient distribution of emergency supplies. 

These phenomena were actually observed in metropolitan Tokyo during the 

Great East Japan Earthquake, where over 5.5 million people were left in city 

centers far from their homes with nowhere to stay overnight [Ito et al., Hiroi 

et al.]. Many metropolitan areas mainly in Southeast Asia such as Manila, 

Jakarta, and Dhaka are facing rapid population increase as well as high nat-

ural disaster risks. There is a huge demand for the real-time prediction of 

people movement in a metropolitan scale during disaster situations in order 

to avoid the expected consequences.  

Recently, aggregated real-time population data are being provided by com-

panies like Zenrin Data Com and NTT, which are aggregations of GPS data 

or Call Detail Record Data (CDR) from mobile phones of users who have 

agreed to give their location data as sample data to mobile phone companies. 

These data are aggregated in square meshes in which both lengths are 250 

meters (Figure 1). Figure 1 shows the density in central Tokyo area. The 

darkness of red shows the highness of density. 

Although these aggregated population data can be used to detect the real-

time density of all areas, it does not provide information on the movement 

of each of the people, which is preferred in further application of people 

movement data.  

Many research have introduced methods to predict daily individual move-

ment, using various datasets such as Call Detail Records (CDR) of mobile 

Figure 1 Example of Density Map Data 



phones [Hasegawa et al., Calabrese et al., Kanasugi et al.], disaggregated 

GPS data [Ashbrook et al., Herrera  et al., Song et al., Horanont et al.], and 

surveys of daily people activities such as Person Trip Surveys (PTS). 

[Sekimoto et al.] predicted the movement of people in metropolitan Tokyo 

and metropolitan Hanoi using the PTS which is a survey that asks a sample 

of around 10% about their daily movement patterns. The PTS also includes 

personal information additional to daily movement such as age, sex, address 

information, and transportation methods, which are very useful in many 

ways. 

 While many researches present methods on the prediction of daily indi-

vidual movement, the movement of people in disaster situations is difficult 

because of the lack of data in these situations. Many researches have used 

multi agent simulations and various constraints to predict the movement of 

people in that situation. However, most of these researches focus on small 

scale areas and specific situations [Levi et al., D’Orazio et al.]. Since the 

problem of being stranded in urban areas is an urgent and serious problem 

in Japan, some researches in Japan have focused on large scale simulation 

[Osaragi]. While multi agent simulations can predict people movement in 

disaster situations, the accuracy of the results is not guaranteed since they 

do not take real-time observed data into account.  

 Some research attempt to assimilate real-time observation data in order 

to improve the accuracy of the prediction [Chen et al., Madey et al.]. How-

ever, these work only focus on the locations of the agents and do not con-

sider their personal characteristics or the reasoning of their movement.  

 In this paper, we present a method to predict people’s irregular move-

ment in a large scale area under disaster situations by combining multi agent 

simulations using personal characteristics obtained from surveys and real-

time observation data. This way, we can accurately predict irregular people 

movement while also being able to give descriptions on why people are ac-

tually showing that movement. 

2. Used Datasets 

3 datasets are used in our method, all of which are purchasable and are 

useable without legal regulations. Based on the PTS provided by the Japa-

nese government, we create the location data of all the people in the time of 

the occurrence of the disaster, since we can apply the additional information 

such as the personal characteristics including age, sex, home location, trip 

purpose, and transportation methods, which are included in the survey in our 

simulation. Also for the simulation, we use the road data and building maps 



provided by Zenrin Data Com ltd. As the observation data during the disas-

ter situations, we use Density Data provided also by Zenrin Data Com. Den-

sity Data is mesh-aggregated population data made from sample GPS dis-

aggregated data, and is  provided every hour. We can assume that Density 

Data will also be provided in disaster times because it was provided during 

the Great East Japan Earthquake. 

3. Methods 

Figure 2 shows the whole flow of our method. It is constructed from 4 

steps. In the first step, we create the primary location data of all the persons 

in the area at the time of the occurrence of the disaster. This must be accu-

rate, since in the second step, we create many scenario candidates of the 

people’s movement 1 time step later with our multi agent simulation. In the 

third step, we compare the real-time observed population distribution data 

with all the scenario candidates we made to evaluate which set of parameters 

generated the scenario closest to the reality. After calculating the optimum 

parameter set based on the likelihood with the real-time population distribu-

tion, in the fourth step we predict the future people movement using that 

optimum parameter set. We repeat the second step to the fourth step every 

time real-time data of population distribution is obtained, and we update the 

optimum parameter set each time. This way, we can continuously predict 

the future movement based on the real-time situation.  



 We must also note that we will predict the people movement under the 

situation that all public transportation have stopped from the damage of the 

disaster, as we have observed in the Great East Japan Earthquake and many 

other natural disasters. The following sections focus on each step more 

closely. 

3.1 Creating Primary Location Data 

The main goal of this step is to create an accurate location data at the time 

of the occurrence of the disaster for every person with personal characteris-

tics from the PTS. We will use the personal characteristics included in the 

PTS in our simulation model to increase the reality of it. The PTS has several 

demerits, which are a) the lack of updates, and b) the vagueness of the loca-

tion information. Firstly, the problem with the lack of updates is that the 

magnification factor (MF) changes as time passes, and since the last PTS in 

Tokyo was held in 2008, there will be some difference from the current pop-

ulation distribution. To cover this demerit, we modified the MF for each 

person so that the total population in each PTS zone matches the observed 

population data. Secondly, the PTS only gives location data by zone codes, 

where each zone is large enough to contain over ten 250 m-meshes. In order 

to raise the accuracy of people distribution when compared with DD in 

250m-mesh aggregated data, we distributed each person in each zone to 

meshes in that zone corresponding to the ratio of population of all the 

meshes in the zone in the observed data. By these two methods, we obtained 

an accurate location data of all the people in the area at the time of the oc-

currence of the disaster. 

3.2 Making Scenario Candidates 

In order to be able to investigate ad predict a scenario close to the reality 

which is difficult to predict because of the irregular, disastrous situations, 

we take an approach that generates many scenario candidates and expect 

that some among them closely reflect the reality. Therefore, to be able to 

generate many scenario candidates in a real-time speed, time must be re-

duced as much as possible, and to realize that, there must be only a few 

parameters, which are also very effective, in the simulation model.  

From the primary location data, we move the agents using multi agent sim-

ulation based on a behavioral model shown on figure 3, until the next time 

step.  

The behavioral model is consisted of 4 parameters describing the possible 

actions of people during and after a disaster. The simulator describes the 

slowing down of people movement due to traffic congestion by applying the 



queueing theory. Also, we have to note that, since we are simulating in a 

situation where all the public transportations have stopped, all the people 

who were riding on them will start moving by foot from the time of the 

occurrence of the disaster. People who were riding their own vehicles will 

stay on them.  

The 4 parameters are shown in Figure 3, and they represent the probability 

of going home directly, going to the station, wandering around, and going 

home after staying at the station, respectively. The action “wandering 

around” represents actions such as going to nearby stores to buy food, mov-

ing to nearby buildings for shelter etc.  

 Regarding the decision of whether to go home directly by foot or not, 

previous research has focused on the relation of the decision with the age of 

the individual and also the distance to his/her home [Osaragi]. Therefore in 

our method, we multiple a coefficient on parameter 1 to get the revised prob-

ability of going home, which considers the age and distance to home of the 

individual. Based on previous work, we set the coefficient to the value plot-

ted on figure 4.  

From figure 4, we can see that in all age groups, people located over 20 

kilometers from their homes will not try to go home directly by foot.  

For each parameter, we assign discrete values also shown as examples in 

table 1, and we generate different scenario candidates by every combination 

of the parameter values. For instance, if all parameters have 4 discrete val-

ues, 44 = 256 scenario candidates will be generated.  

 As previous work [Wako et al.] mentions with actual data as proof, peo-

ple’s movement differs greatly from that of daily activities. Also it is also 



suggested that people movement under disaster situations is predictable 

since most people make movements that are rare but taken sometime before 

in their lives, such as going to their relatives’ or friends’ homes [Lu et al.]. 

By generating many scenario candidates and covering a wide range of 

movements after disaster in our method, we have a high possibility of gen-

erating a scenario that reflects the reality well, which is difficult to guess 

right with only one scenario. 

3.3 Comparison with Real Time Observed Data 

In the next step, we compare the scenario candidates we made with the 

real-time observed data. Any type of dataset can be used as the real-time 

observed data, but in this method we assume the usage of “Density Map 

Data” (DMD) provided by Zenrin Data Com co. which is a set of real-time 

population distribution data of all the areas in Japan. DMD is produced from 

GPS data of mobile phone users who have agreed in providing their location 

information as samples. In DMD, the population in each 250 meter-square-

mesh is shown, so we aggregate the population in each of the scenario can-

didates into the same meshes for comparison.  

 To evaluate the error of each scenario candidate from the real-time ob-

served data, we calculate the root mean squared error for each scenario can-

didate by the formula (i),  

 

 𝑅𝑀𝑆𝐸 =  √
∑ (𝑉𝑖 − 𝑉𝑖

′)2
𝑖

𝑛
 (i) 



where n and i represent the number of meshes and the mesh number re-

spectively, and 𝑉𝑖, 𝑉𝑖
′ represent the simulated population and observed pop-

ulation in mesh i respectively.  

 Using the RMSE values, we calculate the likelihood from formula (ii).  

 

 
𝐿𝑖 =  

1

√2𝜋𝜎2
exp (

−(𝑅𝑀𝑆𝐸)2

2𝜎2
) (ii) 

where 𝐿𝑖 is the likelihood for the scenario candidate i, σ is 25% of the 

average population per mesh in that area.  

Then, to earn the optimum parameter, we calculate the weighted average 

of the parameters in all of the scenario candidates using the likelihood, from 

formula (iii).  

 

 

 

 

 

 

(iii) 

This way, even though our parameters are discrete values, our optimum 

parameters are continuous values.  

 

3.4 Predicting with Optimum Parameter 

Finally, in the fourth step, we run the simulation until several hours ahead 

using the optimum parameter set to predict the future people movement dur-

ing the disaster situation. We repeat steps two to four, every time observa-

tion data is obtained to reflect the real-time movement of the people.  

 We evaluated our predictions by comparing them to the observed DMD 

of the same day and calculating their correlation coefficients.  

4. Experiment 

To verify our method, we carried out an experiment to simulate the people 

movement in the Great East Japan Earthquake which occurred on 14:47 of 

11th March, 2011. The earthquake stopped all public transportation until 

midnight of the 11th of March in Metropolitan Tokyo, and over 5.5 million 

people could not return home. Although direct damage from the earthquake 

was barely done in Tokyo, confusion and secondary damage caused by con-

gestion and crowdedness had a huge impact.  



 Figure 4 shows the 2 areas of study: 3 central wards in metropolitan Tokyo 

(Shinjuku, Chiyoda, Bunkyo wards) in blue, and Fujisawa City in Kanagawa 

prefecture in green, which is located around 50 kilometers from central To-

kyo. 

Figure 5 Two Areas of Experiment 

 

We carried out experiments on these 2 areas to see the difference of people 

movement depending on the size and population density of the city. For the 

experiment, we used the 2008 Tokyo Metropolitan PTS, building data map 

and DMD provided by Zenrin Data Com co., and the Digital Road Map pro-

vided by DRM.  

We were able to produce the primary location data for each of the areas 

with a very high accuracy, with a correlation coefficient of 0.996 and 0.997 

in central Tokyo and Fujisawa respectively when evaluated in 250 meter-

square-meshes against the DMD of ZDC.  

Central Tokyo area contains 3 million people at daytime, and 92% of them 

are located at their “goal” location of the day, for example workplace or 

school, and only 16.5% of them are at home. This is reasonable since many 

people live in the outskirts of Tokyo and most of them are coming to central 

Tokyo for work at daytime.  

On the other hand, Fujisawa city contains 0.4 million people and 46% of 

them are at home. The significant difference between the 2 areas, are very 

convincing, considering their locational and functional characteristics.  



 For the parameters, we set 4 

discrete values {0, 0.2, 0.4, 

and 0.6} for each parameter. 

Also, we assumed that the 

real-time observation data 

can be obtained once in every 

hour. We simulated the peo-

ple movement until 8 hours 

after the disaster, since after 8 

hours, trains start to move in 

Tokyo, which we do not take 

in to account in this model. 

Therefore, we update the op-

timum parameter every hour 

in this experiment. 

5. Results 

Figure 6 shows an ani-

mated version of the result of 

the prediction in metropolitan 

Tokyo area. We can see that 

before the earthquake (1st 

frame, 14:05), the brightness 

is high meaning that the 

movement is very active in 

all areas. However, when the 

earthquake hit Japan (2nd 

frame, 14:47), we can see all 

the movements stop, darken-

ing the whole metropolitan 

Tokyo, due to the confusion 

and shock. After 1 hour (3rd 

frame, 16:47), although slow 

in speed, people gradually 

start to move mainly in the 

central parts of Tokyo. More 

people start moving as time 

passes (4th frame, 17:47), and 

at night (5th frame, 22:47), we 

can clearly see that people are 



spreading from central Tokyo to the outskirts where their homes are. These 

movements represent the people who decided not to stay in central Tokyo 

and walk home instead.  

Figure 7 shows the accuracy of prediction of each optimum parameter until 

8 hours. For example, the blue line represents the accuracy of prediction if 

we keep on using the optimum parameter calculated after the 1st hour. We 

can see that, by updating the optimum parameters every hour, the accuracy 

of prediction is increasing in both areas. Therefore, we can conclude that the 

repetition of steps 2 to 4 are effective in this method. However, the predic-

tion accuracy decreases as time passes even when we update the optimum 

parameters. This is because as time passes, more and more people take 

movements which are not covered by the behavioral model in our simula-

tion. A good example for this is going home and then going to school to pick 

up their kids. We have not included additional trips after arriving at home, 

which is common in an emergency situation.  

 To relatively evaluate our method, we compared the results with 2 other 

methods, one of which is the daily people movement, and the other, the 

movement when we used the Poisson distribution to determine the parame-

ters in the same behavioral model we used. The Poisson distribution is used 

in previous work [Osaragi] as parameter values in disaster scenario simula-

tions. Figure 8 shows the comparison of the correlation coefficient and 

RMSE values of the 3 methods. We can see that compared to the other 2 

methods, our proposed method has the highest correlation with the actual 

observed data, and the RMSE is also the smallest among them. By compar-

ing the result of our method to the method where parameters were set ac-

cording to the Poisson distribution, we can conclude that generating many 

scenario candidates and calculating the optimum parameter is effective in 



catching real-time movement especially in a situation where prediction is 

difficult.  

 Figure 9 shows the number of people who moved to each destination in 

each hour in our optimum scenarios in central Tokyo area. We can see that 

as time passes, the number of people who head home directly by foot de-

creases, while the number of people heading to the nearby stations con-

versely increase. This result accurately reflects the peoples’ actions on the 

day of the disaster, where many people tried to return home when it was 

early and bright, but hesitated to do so as it got darker. This result is also 

accurate compared to past research based on a survey, which mentions that 

Figure 9 Behaviors of People in Simulation of Central Tokyo 



a total of 50% of the people started to head home by 20:30, where 48% of 

them did in our prediction.  

 Looking at the number of people wandering around, we can also see that 

the number of people increases right after the disaster occurs, and at 

nighttime. This is explainable because it can be assumed that right after the 

disaster many people evacuate to nearby buildings, and at night people 

would go shopping for food and commodities to spend the night away from 

home. By using a behavioral model in our simulation, we were able to ana-

lyze and give descriptions to the peoples’ movement. Also, this allowed us 

to evaluate qualitatively that our method accurately simulated the movement 

of the people on the day of the Great East Japan Earthquake.  

6. Discussion 

In this paper, we proposed a method to predict people movement under 

disaster situations by combining multi agent simulation based on a behav-

ioral model with real-time observation data. Our behavioral model consid-

ered personal characteristics when determining actions of individuals, which 

added persuasiveness to our model and output. In order to predict people 

movement which is difficult compared to daily movement, we generated 

many scenario candidates and calculated the optimum parameter set based 

on the comparison of each candidate with the observed real-time data. This 

allowed us to cover a wide range and variety of movement of the people, 

which is needed when predicting an uncertain situation like post disaster 

times.  

 Based on the experiment on the Great East Japan Earthquake, we verified 

the effectiveness of our method compared to other methods, and also con-

firmed the effectiveness of updating the parameter every time observation 

data is obtained. Also, by looking at the number of people by destination 

and comparing it to the results of a survey, we confirmed the accuracy of 

the method qualitatively.  

 However, there are some work left for the future. Firstly, the behavioral 

model we used in our method does not include trips after arriving at home 

in order to keep the model simple and keep the number of parameters less. 

As we have seen in the results, the prediction accuracy lowers as time passes, 

and there is a need to consider actions after arriving home especially as more 

people start arriving home.  

Also, when predicting the people movement of hours ahead, in this method 

we used the optimum parameter set calculated each hour, and did not con-

sider the optimum parameter sets calculated before when updating every 

hour. Although we were able to predict with high accuracy in our current 



method, applying a new method for updating optimum parameters using not 

only the newest optimum parameter but also the ones before would be an 

interesting topic.  

7. Conclusion and Future Work 

In the Great East Japan Earthquake, Tokyo experienced great congestion 

and confusion mainly caused by the stoppage of public transportation. With 

the rapid of growth of urban areas in many countries, and continuous if not 

increasing risk of damage caused by natural disasters, the need of disaster 

preparation technologies is rising. An accurate prediction of people move-

ment in disaster situations would give decision makers quantitative grounds 

for making decisions and policies rather than making assumptions or expe-

rience based judgments.  

 In this paper, we introduced a method to accurately predict people move-

ment in disaster situations using real-time observation data. Through an ex-

periment, we confirmed the effectiveness of the method in an earthquake 

situation, and future work would include expanding the application of the 

method to other disasters such as typhoons and snowstorms. Also, due to the 

damage from the disaster, some data might become fragmented. A method 

to deal with partial observation data would be needed to make this method 

a more practical one.  

 Regarding the issues raised in section 6, future work would also involve 

the increase of options of movement for especially people who have once 

arrived at home. Also, considering a new algorithm for updating optimum 

parameters would be an interesting topic for future research.  
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